THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Problem Set 8

1. Let f(x, y) = xy.

- (a) Draw the level set $L_1(f)$.
- (b) Find ∇f and draw ∇f restricted on $L_1(f)$.
- 2. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a function such that all second partials of f are continuous. Suppose that $\mathbf{v} = (v_1, v_2, v_3)$ is a unit vector, express $\nabla_{\mathbf{v}}(\nabla_{\mathbf{v}} f)$ in terms of the components of \mathbf{v} and the second partials of f.

What is the interpretation of this quantity for a moving observer?

- 3. Find the Taylor series generated by the following functions at given points and write down your answers in summation notation.
 - (a) $f(x) = \cos x$ at $x = \pi/2$;
 - (b) $f(x) = \ln(1+x)$ at x = 0;
 - (c) $f(x) = e^x$ at x = 1.
- 4. By considering the Taylor series generated by e^x and $\cos x$ at x = 0, find the Taylor polynomials of degree 3 generated by the following functions at x = 0.
 - (a) $e^x \cos x$;
 - (b) $e^{\cos x}$;
 - (c) $\frac{e^x}{\cos x}$.
- 5. (a) Find the Taylor polynomial $P_2(x)$ of degree 2 generated by the function $\sqrt[3]{1+x}$.
 - (b) Hence, approximate $\sqrt[3]{1.3}$ and show that the error of your approximation is less that 2×10^{-3} .
- 6. Let $f(x) = \ln(1-x)$ for x < 1.
 - (a) Find the Taylor series generated by f(x) at x = 0.
 - (b) Write down the Taylor polynomial $T_3(x)$ of degree 3 generated by f(x) at x = 0 and the Lagrange remainder $E_3(x)$.
 - (c) Hence, approximate $\ln 0.9$ and show that the error of your approximation is less than $\frac{1}{4 \times 9^4}$.
- 7. Let f(x) is a polynomial of degree n > 0 and let $a \in \mathbb{R}$.
 - (a) If $P_n(x)$ is the Taylor polynomial of degree n generated by f(x) at x = a, show that $f(x) = P_n(x)$.
 - (b) Suppose that $f(a) = f'(a) = \cdots = f^{(r-1)}(a) = 0$ and $f^{(r)}(a) \neq 0$, where $1 \leq r \leq n$. Prove that (x-a) is a factor of f(x) with multiplicity r, i.e. $f(x) = (x-a)^r g(x)$ for some polynomial g(x) such that g(x) is not divisible by x - a.
 - (c) By using the result in (b), factorize $x^5 7x^4 + 19x^3 25x^2 + 16x 4$.